High-resolution 3D Photolithography

The most exciting opportunity in Additive Manufacturing (AM) is the complexity aspect, i.e. that any 3D structure designable can be produced placing material in 3D space wherever necessary. However, this is only theoretically true: There are two limitations to this: the obtainable resolution and the necessity to support overhanging structures. As the material geometry and the mechanical properties evolve at the same time via this bottom-up approach, the mechanical properties and the geometry are also interlinked, which means, the more precise you can manufacture, the more isotropic, reliable and predictable your material properties will be.
Among all AM technologies, photolithographic AM is the most precise, with conventional UV lithography having resolutions in the sub-10µm regime and techniques based on nonlinear absorption having sub 100 nm resolution. Furthermore, some of these techniques do not even need support structures, making the fabrication of arbitrary complex designs possible.
3D photolithography helps us in many cases to realize our projects, to fabricate designs not possible with other techniques and to achieve material properties not obtainable thus far.

Collaborators: TU Wien amt.tuwien.ac.at

  1. P.E. Petrochenko, J. Torgersen, P. Gruber, L.A. Hicks, J. Zheng, G. Kumar, R.J. Narayan, P.L. Goering, R. Liska, J. Stampfl, A. Ovsianikov, Laser 3D Printing with Sub-Microscale Resolution of Porous Elastomeric Scaffolds for Supporting Human Bone Stem Cells, Adv. Healthcare Mater. 4 (2015) 739–747. doi.org/10.1002/adhm.201400442
  2. A. Ovsianikov, S. Mühleder, J. Torgersen, Z. Li, X.-H. Qin, S. Van Vlierberghe, P. Dubruel, W. Holnthoner, H. Redl, R. Liska, J. Stampfl, Laser Photofabrication of Cell-Containing Hydrogel Constructs, Langmuir. 30 (2014) 3787–3794. doi.org/10.1021/la402346z
  3. J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, J. Stampfl, Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix, Adv. Funct. Mater. 23 (2013) 4542–4554. doi.org/10.1002/adfm.201203880
  4. Z. Li, N. Pucher, K. Cicha, J. Torgersen, S.C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, R. Liska, A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization, Macromolecules. 46 (2013) 352–361. doi.org/10.1021/ma301770a
  5. Z. Li, J. Torgersen, A. Ajami, S. Mühleder, X. Qin, W. Husinsky, W. Holnthoner, A. Ovsianikov, J. Stampfl, R. Liska, Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels, RSC Adv. 3 (2013) 15939–15946. doi.org/10.1039/C3RA42918K
  6. X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S.C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, R. Liska, Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization, J. Polym. Sci. Part A: Polym. Chem. 51 (2013) 4799–4810. doi.org/10.1002/pola.26903
  7. A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, R. Liska, Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry, Adv. Funct. Mater. 22 (2012) 3429–3433. doi.org/10.1002/adfm.201200419
  8. J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, J. Stampfl, Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms, Journal of Biomedical Optics. 17 (2012) 105008–105008. doi.org/10.1117/1.JBO.17.10.105008
  9. A. Ovsianikov, Z. Li, A. Ajami, J. Torgersen, W. Husinsky, J. Stampfl, R. Liska, 3D grafting via three-photon induced photolysis of aromatic azides, Applied Physics A. 108 (2012) 29–34. doi.org/10.1007/s00339-012-6964-9


3D printed race car


St. Stephen's cathedral 3D printed.